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ABSTRACT— Data-driven applications, in High-performance computing systems, involve a significant number of metadata 

operations, irregular access patterns, and small I/O requests. As a result, traditional parallel file systems became unable to 

efficiently handle such recent workloads, and data-driven applications suffered from significant I/O latency, lower throughput, 

and longer wait times. User-level file systems enhance the overall performance of High-performance computing clusters since 

the deployment overhead of such file systems is low compared with the application runtime. However, the use of a user-level 

file system is not without cost when used as part of a job or workflow. This is because it provides a new environment without 

data once it is deployed. Therefore, the input data must be copied from the parallel file system to the user-level file system 

before the computing job can start, and the output data must be copied in reverse from the user-level file system back to the 

parallel file system once the computing job is finished. These operations are referred to as stage-in and stage-out. In addition, 

a set of underlying technological difficulties are introduced either by High-performance computing platforms or application 

workloads. This paper introduces the most important limitations that could face user-level file systems when deployed in High-

performance computing clusters. 
Keywords— HPC, PFS, user-level file systems. 

I. INTRODUCTION  

High-Performance Computing (HPC) term refers to all the 

facts of technology, methodology, and applications associated 

with achieving the highest computing power at any given 

time and technology. It aims to run complicated 

computational problems (i.e., workloads) as fast as possible 

on supercomputers. This action is commonly referred to as 

"supercomputing" [1]. Figure 1 shows an example of an HPC 

cluster, tiered as separate sets of computing and storage 

nodes, offering massive CPU cores, low-latency 

interconnects, and fast concurrent data bandwidth, typically 

managed by an underlying parallel file system. In some cases, 

a single misbehaving application can slow down the entire 

HPC system by interfering with other applications that use 

the same I/O subsystem. Such a situation is likely to become 

more common with larger and more powerful HPC systems 

[2]. 

 A file system is the part of the operating system responsible 

for managing files and the resources on which these are 

stored. Effective computing would be near impossible 

without file systems. It allows efficient use of back-end 

storage devices, provides file sharing across various users and 

programs, and provides an abstract view of files and 

directories [3].  

Parallel I/O systems appeared in the 1990s with two types of 

proposals: I/O libraries and parallel file systems (PFSs). The 

libraries which provide parallel access to data were proposed 

in NetCFD [4] and MPI-IO [5]. On another side, a set of early 

parallel file systems were developed such as PPFS [6], Lustre 

[7], Vesta [8], PARFISYS [9], BurstFS [10], Galley [11], 

BeeGFS [12]. HPC systems use such PFSs as storage 

subsystems where the data is shared by all users in a parallel 

manner [2]. However, providing a robust and effective file 

system is one of the critical issues in HPC today, as a 

response to a wide range of scientific applications that 

produce and manipulate massive amounts of data [13].  

While workloads, in the last few years, essentially performed 

sequential I/O operations on large files, the current data-

driven applications involve a significant number of metadata 

operations, irregular access patterns, and small I/O requests. 

As a result, the mentioned examples of traditional parallel file 

systems became unable to efficiently handle such recent 

workloads, and data-driven applications suffered from 

significant I/O latency, lower throughput, and longer wait 

times [14]. 

 

Today, many supercomputers include SSDs, which can be 

utilized as dedicated burst buffers or as node-local burst 

buffers. The emergence of non-volatile storage media (e.g., 

NVRAM and SSDs) offers a great opportunity in such a 

setting. It is widely believed that NVRAM/SSDs will serve to 

bridge the I/O execution bottleneck between applications and 

hard disks because of their higher throughput and lower 

latency compared to hard disks [15]. 

Burst buffers are storage resources located between the 

parallel file system and the compute nodes. This new tier 

within the storage hierarchy closes the performance gap 

between node-local storage and parallel file systems. To 

exploit the bandwidth of burst buffers sufficiently, a number 

of file systems have been designed [16]. Furthermore, many 

user-level file systems emerged to exploit the fast storage 

resources (e.g. NVRAMs or SSDs) on nodes themselves. 

Figure 1. Overview of HPC cluster components. 
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User-level file systems can be implemented at the node level 

for particular HPC workloads to achieve high performance, 

unlike system-level file systems that are not optimized for 

HPC workloads and must be implemented by system 

administrators [17]. In this context, it is worth distinguishing 

between PFS, which has dedicated nodes and is considered a 

global file system shared by the users of the HPC system, and 

the user-level file systems (i.e., on-demand file systems) that 

use local storage of the nodes and is created for a specific 

application and deleted when the application is finished [2]. 

Figure 2 shows the improvement of the memory hierarchy of 

HPC systems that recently involves nodes SSDs and NVMe  

This paper gives an overview of user-level file systems and 

their role in improving HPC systems by discussing two of 

them DeltaFS and MarFS. It also identifies most of the 

constraints that could limit the use and performance of user-

level file systems. The rest of this paper is organized as 

follows: Section 2 contains the literature review; Section 3 

explains the work of recent user-level file systems. Section 4 

explains the limitations that may affect a user-level file 

system when it is deployed on HPC systems. 

II. LITERATURE REVIEW 

Parallel file systems have been developed, as a result of the 

necessity for high-throughput and concurrent read/write 

capabilities in HPC applications. One of the most common 

examples is the Lustre parallel file system [18] which is 

developed to provide I/O performance and overcome the 

restrictions of classical storage technologies. While all clients 

in Lustre architecture do the same functionalities, the servers 

play a variety of roles; for example, metadata servers handle 

the file system’s metadata, and the object storage servers that 

maintain the file system’s data in the form of objects [19]. 

This means that Lustre has separate metadata and object 

storage and implements a client-server approach with a 

server-side and distributed lock controller that ensures client 

coherency [7]. While Lustre is completely POSIX 

compatible, all transactions are handled atomically. This 

means that all I/O requests are processed in order, without 

interruption, to avoid conflicts. On the other hand, it employs 

a distributed lock manager to handle the thousands of 

authorized clients attempting to access the file system in 

order to achieve parallelism. To be more specific, each 

component of the Lustre file system includes an instance of 

the Lustre distributed lock manager [20]. As a result of its 

excellence, Lustre has been deployed on more than half of the 

world’s fastest supercomputers [7]. 

Another example of PFS is BeeGFS which began in 2004as a 

project to integrate Lustre PFS in a video streaming context 

and as storage in a 64-node Linux cluster with the objective 

of offering a scalable multi-threaded architecture [21].  

BeeGFS provides some kind of flexibility, the client is 

constructed as a LINUX kernel module with additional 

software components that had been added to user space [22]. 

The architecture of BeeGFS includes the client side which is 

implemented with its private caching method that is staying 

up to date and tracking kernel changes. Besides clients, there 

are the metadata server, storage server, and management 

server[21, 23]. 

BurstFS, a distributed burst buffer file system, is proposed in 

[24] as a way to deliver high and scalable performance for 

burst I/O demands in scientific applications. BurstFS 

increased bandwidths by 1.83 and had strong scalability, 

according to preliminary testing. 

One of the main shortages in implementing PFS in the HPC 

environment is obtaining a sufficient level of reliability and 

data integrity. Others investigated this issue and introduced a 

general tool for analyzing the failure handling of PFS named 

as PFault [25].  

PFS is dependent heavily on POSIX I/O API since it is 

common between various Unix flavors. Because POSIX I/O 

API was the only option for a long time, most parallel 

applications and libraries (i.e. MPI-IO) were written to be 

compatible with POSIX API. Indeed, POSIX API was 

designed, from the start, for sequential applications and has 

many features that limit the performance of parallel 

applications [26]. However, many studies have proposed 

ways to use node-local storage devices such as SSD or 

NVMe to set up user-level, on-demand, and private parallel 

file systems for an HPC application. User-level file systems 

are designed to provide the efficiency and throughput 

required for concurrent data-driven applications [2]. 

III. USER-LEVEL FILE SYSTEMS 

Since implementing traditional PFS on the HPC systems 

limits the performance, many researchers proposed solutions 

to create user-level, on-demand, and private parallel file 

systems for an HPC workload by utilizing node-local storage 

devices such as SSD or NVMe. User-level file systems are 

designed to achieve the required throughput and performance 

for parallel data-driven applications [2]. 

      In contrast to the fact that POSIX file system semantics 

are used by the majority of large data centers for legacy 

workloads. Los Alamos National Laboratory's MarFS open 

-source initiative provides cloud-style object storage as a 

scalable POSIX-like file system. MarFS [27] was created to 

offer a cost-effective alternative to the expensive bandwidth 

of tape and the expensive capacity of PFS. It can store data 

sets for years at rates of up to 100 GB/sec. By distributing 

data among a large number of objects, or even multiple object 

systems, MarFS expands data capacity and bandwidth. It 

is developed to scale capacity and bandwidth in two 

dimensions for metadata. 

 

 

 

Figure 2. Memory hierarchy with node-local storage (SSD, 

NVme, and DRAM) 
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DeltaFS [28] is another example of a user-level file system 

that avoids the need for dedicated servers to host data 

or metadata. Alternatively, the client middleware of a parallel 

job creates a file system namespace service that uses 

only scalable object storage and communicates with other 

jobs by sharing or distributing namespace snapshots. This 

server-less file system design is proven through experiments 

that it performs metadata operations of magnitude faster than 

conventional parallel file systems.  

IV. LIMITATIONS 

The use of user-level file systems in HPC clusters improves 

overall performance because the overhead of such file 

systems is low compared to the application runtime. In spite 

of that, user-level storage systems deployment is not without 

cost when used as part of a job or workflow. This is because 

such a storage system provides a new environment without 

data as soon as it is initiated. Such limitations that have faced 

the development and deployment of user-level file systems 

are summarized as follows:  

A. Compatibility of storage devices 

Storage devices are one of the critical resources that user-

level file systems must handle. Local file systems like EXT4 

and XFS have long been used as an abstraction point between 

distributed service daemons and local storage resources in 

parallel and distributed file systems. Local file system 

abstractions are still a viable and highly portable design 

option, but the development of new storage device 

technology has sparked a fresh round of research into 

alternate interfaces [29].  

Persistent memory devices, for example, have more in 

common with dynamic memory than spinning magnetic 

media, and therefore may be accessed more effectively 

through direct user-space load/store operations rather than 

through indirect kernel-space block device and page cache 

activities. This feature has led to the development of storage 

abstractions like the Persistent Memory Developers Kit 

(PMDK), which provide simple transactional storage 

primitives on top of memory-mapped devices rather than 

block devices [30]. 

Lower-latency access routes can also benefit from faster 

block device interfaces. For example, the Storage 

Performance Development Kit (SPDK) offers an alternative 

interface for NVMe devices that uses user-space device 

drivers to reduce latency. PMDK and SPDK are designed for 

two different storage systems, but they both have the same 

goal: to reduce access costs for devices that don’t follow the 

design assumptions and performance characteristics of 

traditional hard drives [31]. 

B. HPC performance at different network protocols 

The network is an essential part of any HPC cluster. 

Therefore, network performance evaluation at various 

protocol levels is critical for the management and 

administration of such clusters since it allows the networking 

system to be validated [32].  

In regard to the hardware side, HPC applications (e.g. science 

and engineering simulation codes) nature needs to be 

operated through node-to-node communication and require 

message passing during execution. A new high interconnects 

for HPC was introduced in which relay on Omni-path which 

is considered as a compatible software with Open Fabrics 

Alliance stack for RDMA fabrics [33].  

Over the years, the widest network abstraction model was 

TCP/IP sockets. Unfortunately, TCP/IP sockets lack to 

required features to adapt to the newest generation of HPC 

systems which are supported by powerful multi-core and 

many-core processing elements in order to achieve, the most 

common metrics, low latency, and high bandwidth [34, 33]. 

On another side, MPI is not easily suited to system services 

since it was built for application-level usage. OFI/libfabric, 

UCX, and Portals are more generic HPC network fabric 

abstractions that are not linked to MPI semantics or 

programming paradigms, making them better fundamental 

building blocks for ad-hoc file system implementations [35, 

36]. Remote procedure calls and Mercury frameworks can be 

used with network abstractions to make creating ad-hoc file 

system services easier. gRPC and Apache Thrift are examples 

of general-purpose distributed computing [37, 38]. 

C. Resource consumption minimization  

The concept of a user-level file system refers to a file system 

that is provided on-demand within an existing system rather 

than having dedicated resources. As a result, such a file 

system 

must be able to coexist with other services or even 

application processes without consuming too much memory. 

The most common resource consumption issues such as busy 

polling of network resources; memory consumption; CPU or 

NUMA contention, should be addressed to get the required 

high performance [39]. 

V.  CONCLUSION 

User-level, on-demand, private parallel file systems for HPC 

workloads leverage node-local storage devices such as SSD 

or NVme. User-level file systems are designed to improve 

throughput and performance for parallel data-intensive 

applications. Two user-level solutions have been discussed 

inthis research: DeltaFs [28] and MarFS [27], but their 

deployment and execution of them, in complex HPC 

environments, are still limited by: the nature of network 

protocols, storage device compatibility, and high 

consumption of node-local resources. 
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