
Sci.Int.(Lahore),34(6),487-491,2022 ISSN 1013-5316;CODEN: SINTE 8 487

November-December

USER-LEVEL FILE SYSTEMS DEPLOYMENT IN HPC BETWEEN
IMPROVEMENTS AND LIMITATIONS

Njoud O. Almaaitah
 Computer Science Department, Information Technology Faculty, Mutah University

 Al-Karak, Jordan

njoudmaitah@mutah.edu.jo

ABSTRACT— Data-driven applications, in High-performance computing systems, involve a significant number of metadata

operations, irregular access patterns, and small I/O requests. As a result, traditional parallel file systems became unable to

efficiently handle such recent workloads, and data-driven applications suffered from significant I/O latency, lower throughput,

and longer wait times. User-level file systems enhance the overall performance of High-performance computing clusters since

the deployment overhead of such file systems is low compared with the application runtime. However, the use of a user-level

file system is not without cost when used as part of a job or workflow. This is because it provides a new environment without

data once it is deployed. Therefore, the input data must be copied from the parallel file system to the user-level file system

before the computing job can start, and the output data must be copied in reverse from the user-level file system back to the

parallel file system once the computing job is finished. These operations are referred to as stage-in and stage-out. In addition,

a set of underlying technological difficulties are introduced either by High-performance computing platforms or application

workloads. This paper introduces the most important limitations that could face user-level file systems when deployed in High-

performance computing clusters.
Keywords— HPC, PFS, user-level file systems.

I. INTRODUCTION

High-Performance Computing (HPC) term refers to all the

facts of technology, methodology, and applications associated

with achieving the highest computing power at any given

time and technology. It aims to run complicated

computational problems (i.e., workloads) as fast as possible

on supercomputers. This action is commonly referred to as

"supercomputing" [1]. Figure 1 shows an example of an HPC

cluster, tiered as separate sets of computing and storage

nodes, offering massive CPU cores, low-latency

interconnects, and fast concurrent data bandwidth, typically

managed by an underlying parallel file system. In some cases,

a single misbehaving application can slow down the entire

HPC system by interfering with other applications that use

the same I/O subsystem. Such a situation is likely to become

more common with larger and more powerful HPC systems

[2].

 A file system is the part of the operating system responsible

for managing files and the resources on which these are

stored. Effective computing would be near impossible

without file systems. It allows efficient use of back-end

storage devices, provides file sharing across various users and

programs, and provides an abstract view of files and

directories [3].

Parallel I/O systems appeared in the 1990s with two types of

proposals: I/O libraries and parallel file systems (PFSs). The

libraries which provide parallel access to data were proposed

in NetCFD [4] and MPI-IO [5]. On another side, a set of early

parallel file systems were developed such as PPFS [6], Lustre

[7], Vesta [8], PARFISYS [9], BurstFS [10], Galley [11],

BeeGFS [12]. HPC systems use such PFSs as storage

subsystems where the data is shared by all users in a parallel

manner [2]. However, providing a robust and effective file

system is one of the critical issues in HPC today, as a

response to a wide range of scientific applications that

produce and manipulate massive amounts of data [13].

While workloads, in the last few years, essentially performed

sequential I/O operations on large files, the current data-

driven applications involve a significant number of metadata

operations, irregular access patterns, and small I/O requests.

As a result, the mentioned examples of traditional parallel file

systems became unable to efficiently handle such recent

workloads, and data-driven applications suffered from

significant I/O latency, lower throughput, and longer wait

times [14].

Today, many supercomputers include SSDs, which can be

utilized as dedicated burst buffers or as node-local burst

buffers. The emergence of non-volatile storage media (e.g.,

NVRAM and SSDs) offers a great opportunity in such a

setting. It is widely believed that NVRAM/SSDs will serve to

bridge the I/O execution bottleneck between applications and

hard disks because of their higher throughput and lower

latency compared to hard disks [15].

Burst buffers are storage resources located between the

parallel file system and the compute nodes. This new tier

within the storage hierarchy closes the performance gap

between node-local storage and parallel file systems. To

exploit the bandwidth of burst buffers sufficiently, a number

of file systems have been designed [16]. Furthermore, many

user-level file systems emerged to exploit the fast storage

resources (e.g. NVRAMs or SSDs) on nodes themselves.

Figure 1. Overview of HPC cluster components.

488 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),34(6),487-491,2022

November-December

User-level file systems can be implemented at the node level

for particular HPC workloads to achieve high performance,

unlike system-level file systems that are not optimized for

HPC workloads and must be implemented by system

administrators [17]. In this context, it is worth distinguishing

between PFS, which has dedicated nodes and is considered a

global file system shared by the users of the HPC system, and

the user-level file systems (i.e., on-demand file systems) that

use local storage of the nodes and is created for a specific

application and deleted when the application is finished [2].

Figure 2 shows the improvement of the memory hierarchy of

HPC systems that recently involves nodes SSDs and NVMe

This paper gives an overview of user-level file systems and

their role in improving HPC systems by discussing two of

them DeltaFS and MarFS. It also identifies most of the

constraints that could limit the use and performance of user-

level file systems. The rest of this paper is organized as

follows: Section 2 contains the literature review; Section 3

explains the work of recent user-level file systems. Section 4

explains the limitations that may affect a user-level file

system when it is deployed on HPC systems.

II. LITERATURE REVIEW

Parallel file systems have been developed, as a result of the

necessity for high-throughput and concurrent read/write

capabilities in HPC applications. One of the most common

examples is the Lustre parallel file system [18] which is

developed to provide I/O performance and overcome the

restrictions of classical storage technologies. While all clients

in Lustre architecture do the same functionalities, the servers

play a variety of roles; for example, metadata servers handle

the file system’s metadata, and the object storage servers that

maintain the file system’s data in the form of objects [19].

This means that Lustre has separate metadata and object

storage and implements a client-server approach with a

server-side and distributed lock controller that ensures client

coherency [7]. While Lustre is completely POSIX

compatible, all transactions are handled atomically. This

means that all I/O requests are processed in order, without

interruption, to avoid conflicts. On the other hand, it employs

a distributed lock manager to handle the thousands of

authorized clients attempting to access the file system in

order to achieve parallelism. To be more specific, each

component of the Lustre file system includes an instance of

the Lustre distributed lock manager [20]. As a result of its

excellence, Lustre has been deployed on more than half of the

world’s fastest supercomputers [7].

Another example of PFS is BeeGFS which began in 2004as a

project to integrate Lustre PFS in a video streaming context

and as storage in a 64-node Linux cluster with the objective

of offering a scalable multi-threaded architecture [21].

BeeGFS provides some kind of flexibility, the client is

constructed as a LINUX kernel module with additional

software components that had been added to user space [22].

The architecture of BeeGFS includes the client side which is

implemented with its private caching method that is staying

up to date and tracking kernel changes. Besides clients, there

are the metadata server, storage server, and management

server[21, 23].

BurstFS, a distributed burst buffer file system, is proposed in

[24] as a way to deliver high and scalable performance for

burst I/O demands in scientific applications. BurstFS

increased bandwidths by 1.83 and had strong scalability,

according to preliminary testing.

One of the main shortages in implementing PFS in the HPC

environment is obtaining a sufficient level of reliability and

data integrity. Others investigated this issue and introduced a

general tool for analyzing the failure handling of PFS named

as PFault [25].

PFS is dependent heavily on POSIX I/O API since it is

common between various Unix flavors. Because POSIX I/O

API was the only option for a long time, most parallel

applications and libraries (i.e. MPI-IO) were written to be

compatible with POSIX API. Indeed, POSIX API was

designed, from the start, for sequential applications and has

many features that limit the performance of parallel

applications [26]. However, many studies have proposed

ways to use node-local storage devices such as SSD or

NVMe to set up user-level, on-demand, and private parallel

file systems for an HPC application. User-level file systems

are designed to provide the efficiency and throughput

required for concurrent data-driven applications [2].

III. USER-LEVEL FILE SYSTEMS

Since implementing traditional PFS on the HPC systems

limits the performance, many researchers proposed solutions

to create user-level, on-demand, and private parallel file

systems for an HPC workload by utilizing node-local storage

devices such as SSD or NVMe. User-level file systems are

designed to achieve the required throughput and performance

for parallel data-driven applications [2].

 In contrast to the fact that POSIX file system semantics

are used by the majority of large data centers for legacy

workloads. Los Alamos National Laboratory's MarFS open

-source initiative provides cloud-style object storage as a

scalable POSIX-like file system. MarFS [27] was created to

offer a cost-effective alternative to the expensive bandwidth

of tape and the expensive capacity of PFS. It can store data

sets for years at rates of up to 100 GB/sec. By distributing

data among a large number of objects, or even multiple object

systems, MarFS expands data capacity and bandwidth. It

is developed to scale capacity and bandwidth in two

dimensions for metadata.

Figure 2. Memory hierarchy with node-local storage (SSD,

NVme, and DRAM)

Sci.Int.(Lahore),34(6),487-491,2022 ISSN 1013-5316;CODEN: SINTE 8 489

November-December

DeltaFS [28] is another example of a user-level file system

that avoids the need for dedicated servers to host data

or metadata. Alternatively, the client middleware of a parallel

job creates a file system namespace service that uses

only scalable object storage and communicates with other

jobs by sharing or distributing namespace snapshots. This

server-less file system design is proven through experiments

that it performs metadata operations of magnitude faster than

conventional parallel file systems.

IV. LIMITATIONS

The use of user-level file systems in HPC clusters improves

overall performance because the overhead of such file

systems is low compared to the application runtime. In spite

of that, user-level storage systems deployment is not without

cost when used as part of a job or workflow. This is because

such a storage system provides a new environment without

data as soon as it is initiated. Such limitations that have faced

the development and deployment of user-level file systems

are summarized as follows:

A. Compatibility of storage devices

Storage devices are one of the critical resources that user-

level file systems must handle. Local file systems like EXT4

and XFS have long been used as an abstraction point between

distributed service daemons and local storage resources in

parallel and distributed file systems. Local file system

abstractions are still a viable and highly portable design

option, but the development of new storage device

technology has sparked a fresh round of research into

alternate interfaces [29].

Persistent memory devices, for example, have more in

common with dynamic memory than spinning magnetic

media, and therefore may be accessed more effectively

through direct user-space load/store operations rather than

through indirect kernel-space block device and page cache

activities. This feature has led to the development of storage

abstractions like the Persistent Memory Developers Kit

(PMDK), which provide simple transactional storage

primitives on top of memory-mapped devices rather than

block devices [30].

Lower-latency access routes can also benefit from faster

block device interfaces. For example, the Storage

Performance Development Kit (SPDK) offers an alternative

interface for NVMe devices that uses user-space device

drivers to reduce latency. PMDK and SPDK are designed for

two different storage systems, but they both have the same

goal: to reduce access costs for devices that don’t follow the

design assumptions and performance characteristics of

traditional hard drives [31].

B. HPC performance at different network protocols

The network is an essential part of any HPC cluster.

Therefore, network performance evaluation at various

protocol levels is critical for the management and

administration of such clusters since it allows the networking

system to be validated [32].

In regard to the hardware side, HPC applications (e.g. science

and engineering simulation codes) nature needs to be

operated through node-to-node communication and require

message passing during execution. A new high interconnects

for HPC was introduced in which relay on Omni-path which

is considered as a compatible software with Open Fabrics

Alliance stack for RDMA fabrics [33].

Over the years, the widest network abstraction model was

TCP/IP sockets. Unfortunately, TCP/IP sockets lack to

required features to adapt to the newest generation of HPC

systems which are supported by powerful multi-core and

many-core processing elements in order to achieve, the most

common metrics, low latency, and high bandwidth [34, 33].

On another side, MPI is not easily suited to system services

since it was built for application-level usage. OFI/libfabric,

UCX, and Portals are more generic HPC network fabric

abstractions that are not linked to MPI semantics or

programming paradigms, making them better fundamental

building blocks for ad-hoc file system implementations [35,

36]. Remote procedure calls and Mercury frameworks can be

used with network abstractions to make creating ad-hoc file

system services easier. gRPC and Apache Thrift are examples

of general-purpose distributed computing [37, 38].

C. Resource consumption minimization

The concept of a user-level file system refers to a file system

that is provided on-demand within an existing system rather

than having dedicated resources. As a result, such a file

system

must be able to coexist with other services or even

application processes without consuming too much memory.

The most common resource consumption issues such as busy

polling of network resources; memory consumption; CPU or

NUMA contention, should be addressed to get the required

high performance [39].

V. CONCLUSION

User-level, on-demand, private parallel file systems for HPC

workloads leverage node-local storage devices such as SSD

or NVme. User-level file systems are designed to improve

throughput and performance for parallel data-intensive

applications. Two user-level solutions have been discussed

inthis research: DeltaFs [28] and MarFS [27], but their

deployment and execution of them, in complex HPC

environments, are still limited by: the nature of network

protocols, storage device compatibility, and high

consumption of node-local resources.

REFERENCES
[1] T. Sterling, M. Brodowicz, and M. Anderson, High-

performance computing: modern systems and practices.
Morgan Kaufmann, 2017.

[2] M. Soysal, M. Berghoff, T. Zirwes, M.-A. Vef, S. Oeste,

[3] A. Brinkmann, W. E. Nagel, and A. Streit, "Using on-
demand file

[4] systems in hpc environments," in 2019 International
Conference on

[5] High Performance Computing & Simulation (HPCS).
IEEE, 2019,

[6] pp. 390–398.

[7] L. F. Bic and A. C. Shaw, Operating systems principles.
Prentice-

[8] Hall, Inc., 2002.

[9] R. Rew and G. Davis, “Netcdf: an interface for scientific
data access,”

[10] IEEE computer graphics and applications, vol. 10, no. 4,
pp. 76–82,

[11] 1990.

490 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),34(6),487-491,2022

November-December

[12] D. Hildebrand, A. Nisar, and R. Haskin, “pnfs, posix,
and mpi-io: a

[13] tale of three semantics," in Proceedings of the 4th
Annual Workshop

[14] on Petascale Data Storage, 2009, pp. 32–36.

[15] J. V. Huber Jr, A. A. Chien, C. L. Elford, D. S.
Blumenthal, and D. A.

[16] Reed, "Ppfs: A high performance portable parallel file
system," in

[17] Proceedings of the 9th International Conference on
Supercomputing,

[18] 1995, pp. 385–394.

[19] T. Zhao, V. March, S. Dong, and S. See, “Evaluation of a
performance

[20] model of lustre file system," in 2010 Fifth Annual
ChinaGrid Confer-

[21] ence. IEEE, 2010, pp. 191–196.

[22] P. F. Corbett, S. J. Baylor, and D. G. Feitelson,
“Overview of the vesta

[23] parallel file system,” ACM SIGARCH Computer
Architecture News,

[24] vol. 21, no. 5, pp. 7–14, 1993.

[25] F. Pérez, J. Carretero, F. García, P. De Miguel, and L.
Alonso, “Eval-

[26] uating parfisys: A high-performance parallel and
distributed file sys-

[27] tem," Journal of systems architecture, vol. 43, no. 8, pp.
533–542,

[28] 1997.

[29] T. Wang, W. Yu, K. Sato, A. Moody, and K. Mohror,
“Burstfs: A dis-

[30] tributed burst buffer file system for scientific
applications," Lawrence

[31] Livermore National Lab.(LLNL), Livermore, CA
(United States),

[32] Tech. Rep., 2016.

[33] N. Nieuwejaar and D. Kotz, “Performance of the gallery
parallel file

[34] system," in Proceedings of the fourth workshop on I/O in
parallel and

[35] distributed systems: part of the federated computing
research confer-

[36] ence, 1996, pp. 83–94.

[37] J. Heichler, “An introduction to beegfs,” 2014.

[38] J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J.
Kunkel, and

[39] T. Ludwig, "Survey of storage systems for high-
performance comput-

[40] ing," Supercomputing Frontiers and Innovations, vol. 5,
no. 1, 2018.

[41] M.-A. Vef, N. Moti, T. Süß, T. Tocci, R. Nou, A.
Miranda, T. Cortes,

[42] and A. Brinkmann, "GekkoFS-a temporary distributed
file system for

[43] hpc applications," in 2018 IEEE International
Conference on Cluster

[44] Computing (CLUSTER). IEEE, 2018, pp. 319–324.

[45] Y. Kim, A. Gupta, and B. Urgaonkar, “Mixedstore: An
enterprise-

[46] scale storage system combining solid-state and hard disk
drives,"

[47] Citeer, 2008.

[48] K. Sato, K. Mohror, A. Moody, T. Gamblin, B. R. De
Supin-

[49] ski, N. Maruyama, and S. Matsuoka, "A user-level
infiniband-based

[50] file system and checkpoint strategy for burst buffers," in
2014 14th

[51] IEEE/ACM International Symposium on Cluster, Cloud
and Grid

[52] Computing. IEEE, 2014, pp. 21–30.

[53] A. Brinkmann, K. Mohror, and W. Yu, “Challenges and
Opportunities

[54] of User-Level File Systemsfor HPC," Lawrence
Livermore National

[55] Lab.(LLNL), Livermore, CA (United States), Tech. Rep.,
2017.

[56] P. Schwan et al., “Lustre: Building a file system for
1000-node clus-

[57] ters," in Proceedings of the 2003 Linux symposium, vol.
2003, 2003,

[58] pp. 380–386.

[59] P. Braam, “The lustre storage architecture,” arXiv
preprint

[60] arXiv:1903.01955, 2019.

[61] T. K. Petersen, “Inside the lustre file system,”
SEAGATE Technology

[62] paper, 2015.

[63] F. Herold, S. Breuner, and J. Heichler, “An introduction
to BeeGFS,”2014.

[64] M. Cintra, “Seventh framework programme,”
Assessment, 2016.

[65] “Home,” Mar 2021. [Online]. Available:
https://www.beegfs.io/c/

[66] T. Wang, K. Mohror, A. Moody, W. Yu, and K. Sato,
“BurstFS: A

[67] distributed burst buffer file system for scientific
applications," in The

[68] International Conference for High Performance
Computing, Networking, Storage and Analysis (SC
poster), 2015.

[69] J. Cao, O. R. Gatla, M. Zheng, D. Dai, V. Eswarappa, Y.
Mu, and

[70] Y. Chen, "Pfault: A general framework for analyzing the
reliability

[71] of high-performance parallel file systems,” in
Proceedings of the 2018

[72] International Conference on Supercomputing, 2018, pp.
1–11.

[73] R. Ross, R. Thakur, and A. Choudhary, “Achievements
and challenges

[74] for i/o in computational science," in Journal of Physics:
Conference

[75] Series. IOP Publishing, 2005, p. 069.

[76] J. T. Inman, W. F. Vining, G. W. Ransom, and G. A.
Grider, “Marfs,

[77] a near-posix interface to cloud objects," ; Login, vol. 42,
no. LA-UR-

[78] 16-28720; LA-UR-16-28952, 2017.

[79] Q. Zheng, K. Ren, G. Gibson, B. W. Settlemyer, and G.
Grider,

[80] "Deltafs: Exascale file systems scale better without
dedicated servers,"

[81] in Proceedings of the 10th Parallel Data Storage
Workshop, 2015, pp.

[82] 1–6.

[83] L. Benedicic, F. A. Cruz, A. Madonna, and K. Mariotti,
“Sarus: Highly

[84] scalable docker containers for hpc systems," in
International Confer-

Sci.Int.(Lahore),34(6),487-491,2022 ISSN 1013-5316;CODEN: SINTE 8 491

November-December

[85] ence on High Performance Computing. Springer, 2019,
pp. 46–60.

[86] H.-b. Chen, Z. Qiao, and S. Fu, “Applying SDN based
data network

[87] on HPC Big Data Computing–Design, Implementation,
and Evalua-

[88] tion," in 2019 IEEE International Conference on Big
Data (Big Data).

[89] IEEE, 2019, pp. 6007–6009.

[90] U. Yang, P. Luszczek, S. Baley, and K. Teranishi, “An
introduction to

[91] the xSDK a community of diverse numerical HPC
software packages."

[92] Sandia National Lab.(SNL-CA), Livermore, CA (United
States), Tech. Rep., 2019.

[93] E. Gamess and H. Ortiz-Zuazaga, “Evaluation of point-
to-point net-

[94] work performance of hpc clusters at the level of udp, tcp,
and mpi,"

[95] in IV Simposio Científico y Tecnológico en
Computación, Caracas,

[96] Venezuela, 2016.

[97] M. Feldman and A. Snell, “A new high performance
fabric for hpc,”

[98] Intersect360 Research white paper, 2016.

[99] G. Maglione-Mathey, P. Yebenes, J. Escudero-
Sahuquillo, P. J. Gar-

[100] cia, F. J. Quiles, and E. Zahavi, "Scalable deadlock-free
determinis-

[101] tic minimal-path routing engine for infiniband-based
dragonfly net-

[102] works," IEEE Transactions on Parallel and Distributed
Systems,

[103] vol. 29, no. 1, pp. 183–197, 2017.

[104] R. Latham, R. Ross, and R. Thakur, “Can MPI be used
for persis-

[105] tent parallel services?" in European Parallel Virtual
Machine/Message

[106] Passing Interface Users' Group Meeting. Springer, 2006,
pp. 275–

[107] 284.

[108] P. Grun, S. Hefty, S. Sur, D. Goodell, R. D. Russell, H.
Pritchard, and

[109] J. M. Squyres, "A brief introduction to the openfabrics
interfaces-a

[110] new network api for maximizing high performance
application effi-

[111] ciency,” in 2015 IEEE 23rd Annual Symposium on High-
Performance

[112] Interconnects. IEEE, 2015, pp. 34–39.

[113] B. W. Barrett, R. Brightwell, S. Hemmert, K. Pedretti, K.
Wheeler,

[114] K. D. Underwood, R. Reisen, A. B. Maccabe, and T.
Hudson, "The

[115] Portals 4.0 network programming interface," Sandia
National Labora-

[116] tories, 2019.

[117] J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q.
Koziol, A. Afsahi, and R. Ross, “Mercury: Enabling
remote procedure call for high performance computing,”
in 2013 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2013, pp. 1–8.

[118] A. Brinkmann, K. Mohror, W. Yu, P. Carns, T. Cortes,
S. A. Klasky,

[119] A. Miranda, F.-J. Pfreundt, R. B. Ross, and M.-A. Vef,
"Ad hoc file

[120] systems for high-performance computing,” Journal of
Computer Sci-

[121] ence and Technology, vol. 35, no. 1, pp. 4–26, 2020.

